Lagrangian Interpolation at the Chebyshev Points xn, cos ( /n), = 0(1)n; some Unnoted Advantages
نویسندگان
چکیده
منابع مشابه
Rational Interpolation at Chebyshev points
The Lanczos method and its variants can be used to solve eeciently the rational interpolation problem. In this paper we present a suitable fast modiication of a general look-ahed version of the Lanczos process in order to deal with polynomials expressed in the Chebyshev orthogonal basis. The proposed approach is particularly suited for rational interpolation at Chebyshev points, that is, at the...
متن کاملFast Evaluation and Interpolation at the Chebyshev Sets of Points
Stable polynomial evaluation and interpolation at n Chebyshev or adjusted (expanded) Chebyshev points is performed using O(nlog’ n) arithmetic operations, to be compared with customary algorithms either using on the order of n* operations or being unstable. We also evaluate a polynomial of degree d at the sets of n Chebyshev or adjusted (expanded) Chebyshev points using O(dlog d log n) if n 5 d...
متن کاملSome Architectures for Chebyshev Interpolation
Digital architectures for Chebyshev interpolation are explored and a variation which is word-serial in nature is proposed. These architectures are contrasted with equispaced system structures. Further, Chebyshev interpolation scheme is compared to the conventional equispaced interpolation vis-á-vis reconstruction error and relative number of samples. It is also shown that the use of a hybrid (o...
متن کاملNewton Interpolation in Fejér and Chebyshev Points
Let T be a Jordan curve in the complex plane, and let Í) be the compact set bounded by T. Let / denote a function analytic on O. We consider the approximation of / on fî by a polynomial p of degree less than n that interpolates / in n points on T. A convenient way to compute such a polynomial is provided by the Newton interpolation formula. This formula allows the addition of one interpolation ...
متن کاملBivariate Lagrange Interpolation at the Chebyshev Nodes
We discuss Lagrange interpolation on two sets of nodes in two dimensions where the coordinates of the nodes are Chebyshev points having either the same or opposite parity. We use a formula of Xu for Lagrange polynomials to obtain a general interpolation theorem for bivariate polynomials at either set of Chebyshev nodes. An extra term must be added to the interpolation formula to handle all poly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Computer Journal
سال: 1972
ISSN: 0010-4620,1460-2067
DOI: 10.1093/comjnl/15.2.156